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An analytical  solution is ca r r i ed  out for the problem of the flow around a sphere with mate-  
rial  c ross  flow at Reynolds numbers less than 1 and a blowing velocity less than the free 
s t r eam velocity. The method of asymptot ic  expansions of Pearson  and Proudman is used 
for the solution. Expressions are  obtained for the distribution of the cur ren t  and velocity 
component functions as well as for the aerodynamic drag coefficient of the sphere.  It is 
shown that blowing diminishes the sphere drag,  where its influence will increase  as the Rey- 
nolds number grows.  

The solution of problems about the flow around, and the heat and mass  exchange from, a spherical  
part icle with blowing on the surface at low Reynolds numbers is of definite in teres t  for the analysis of such 
processes  in disperse flows as drying, sublimation, thermal  expansion, fuel combustion, heterogeneous 
react ion with a Stefan s t ream,  etc. 

Among the papers in this a rea  [1-8], both [6, 7] should be considered the f i rs t  sys temat ic  investiga- 
tions in which approximate analytical  solutions were obtained for both the hydrodynamic and heat problems,  
and an experimental  confirmation was ca r r i ed  out. However, only the f irst ,  Stokes, approximation was 
found for the velocity field in [6], which does not permit  est imation of the influence of blowing on the sphere 
drag.  In the same paper the uniformly valid solution for the heat problem for the whole flow domain was 
also sought by the essent ial ly  c lass ical  method of expansion in a small  pa ramete r .  

Meanwhile, Oseen [9], Proudman and Pearson  [10] (for the hydrodynamic problem), and Acrivos and 
Taylor  [11] (for the heat problem but without blowing) showed that the inert ial  or  convective te rms  become 
of the same order  as  the molecular  t ranspor t  t e rms  far f rom the sphere,  and hence, the ordinary  method of 
decomposit ion in a small  pa ramete r  yields a known e r r o r  since, in a second approximation,  it does not 
permit  s t r ic t  sat isfaction of the boundary conditions at  infinity nor obtaining a single exact  solution in the 
whole domain f rom r = 1 to r = ~. 

The purpose herein  is a more co r r ec t  determination of the velocity field and aerodynamic  drag coef- 
ficient of the sphere for the ease under consideration~ An at tempt is made to solve the problem of flow 
around a sphere with uniform blowing at R < 1 (R = aU~ v -1, a is. the coefficient of kinematic viscosity) in 
at least  a second approximation by using the analytical method developed in [10], which is apparently the 
most  r igorous of existing methods. Henceforth, we keep in mind the use of resul ts  here in  also for the more 
exact  solution of the corresponding heat problem by using a method analogous to that proposed in [11]. 

The fundamental equation for the s t r eam function in the notation f rom [10] is 

o<,  2,1+ 2 ( . o, 1 o, 
- -  1 - - ~  2 Or - t - -"7-  0 ~  / 

0 ~ 1 - -  g..2 O: 
D ~ = ~ ~ r 2 Op~ 

where D 2 is the Stokes opera tor  and # - cos O, 0 = 0 is the free s t r eam direction. 

(1) 
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According to [10], its solution is sought in the form of two different approximate expansions for the 
same s t r eam function, which is a r igorous but unknown solution in the whole flow domain. One of them r 
should sat isfy the boundary conditions on the surface exactly and be valid only for the internal or  Stokes 
flow domain near the Sl~here. It is represen ted  as 

co 

$ = ~ J= (R),~ (r, ~) (2) 
~ z ~ 0  

under the condition that f n + l / f  n ~ O, if R-- '0 ,  and can be found direct ly  f rom (1). 

The second should sat isfy the boundary conditions at  infinity and be valid only in the external  or  Oseen 
domain at la rge  distances f rom the sphere.  By the change of variable 

P = Rr ,  ~ = R2r (3) 

(1) is  hence  conve r t ed  into the following: 

t O(W'D'2~I') @ ( ) p~ O (p~ ~) + D p 2 ~  ~t 0't' I 0'I" - -  t -- ~ o.~ + ~ - ~ -  = Dp4 ' f  (4) 

and the solution is also sought as  the ser ies  

oo 

= ~, e~ (R) ~z~ (p, ~) (5) 
n = = 0  

where F n + l / F n ~ 0  as R ~ 0 .  

When there is blowing and the constants of the injected mater ia l  and the free s t r eam are identical, 
these equations remain  valid, but the boundary conditions to which ro t  V = (r sin 0)-1D2r belongs change. 
If (3) is taken into account,  and the radial  velocity of blowing through the surface is denoted by V*, they 
then a re  

v* 
Vr = k  = - ~ ,  V0~---0 for r = i  

or  

0 ~ 0 '~ 
o~ - - - - k ,  - 5 7 = 0  

V r = ~ ,  V0=-- ( t - -~ t2)  .1., r o b v = 0  for r-->oc 
(6) 

o r  

Dp:tF t 0'F t 0~F - - t - - ~ 2 ,  - -  0 
p-' 0~ - -  bt' p 0p p 

Since not one but two expansions are  sought, the boundary conditions (6) and (7) a re  insufficient for 

(7) 

the solution. However,  as has been said, both expansions a re  only different representa t ions  of the same 
s t r e a m  function which are  homogeneously valid in the whole flow domain. Hence, the missing boundary 
conditions resul t  f rom the condition of the identity of the asymptot ic  continuations of ei ther  expansion in 
some intermediate  domain. Similarly for ro t  V (or curl  V). 

This matching condition for the s t r e a m  functions is 

= R-~F 
r ~  p~O 

(s) 

and for curl  V 

+ D r 2  ~ = RDp2~ F (9) 

r ~ e o  p--*0 

For the case k < 1 under considerat ion,  the velocity should nowhere exceed the o rder  of the free 
s t r eam velocity. Hence, the principal t e rm in the in ter ior  expansion (2) should be independent of R, and we 
can assume f0(R) = 1. Then, (1) becomes for the principal t e rm 
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Dr4% = 0 

and i ts  solut ion which r e m a i n s  finite fo r  ~ = �9 1, is 

co 

Q" (Ix) = I p~ (Ix) dIx 
- - t  

where  Pn(#) is the Legendre  polynomial  of  the f i r s t  kind. 

(10) 

(11) 

The influence of blowing in the Oseen domain is vanishingly small, and hence, the principal term of 
the expansion (5) can be found from the unperturbed flow condition at infinity, as in [10] : 

~Fo = i/2p2 (i _ ~2) (12) 

where F0(R) = 1, as follows from the selection of the Oseen coordinates (3). Cn the other hand, Dp2q,0 = 0, 
in the unperturbed stream, and the matching condition (9) will hold if (11) is represented in the coordinates 
(3) and it is assumed that FI(R) = R: 

/ A R n+t Bn  pn 
~. | " + Q~ (ix) = o (R 2) (13) 

Condit ion (13) is sa t i s f ied  only if A 0 = 0 and B n = 0, i .e . ,  it  follows f r o m  (11) tha t  

co 

= r" Q= (ix) (14) 

The gene ra l  so lu t ion  of  (14) is 

0o 

% = ~, r~ A- D~r T M  - -  On (Ix), Ao ---- 0 n=0 2 (2n -- t) r n-2 

and the solut ion sa t i s fy ing  the boundary  condi t ions  on the su r f ace  (6) is 

2"+ 1 +Ix) r = 2 - - 7 - ~ -  r"+l - -  2r,l------~ 

In o r d e r  to ma tch  the solut ions  (12) and (16) in c o n f o r m i t y  with the condi t ion (8), only the h igher  t e r m s  
r e m a i n  in (16) as  r ~o~, and it  is r e p r e s e n t e d ,  as  be fo re ,  in the coord ina t e s  (3) 

c~ 
p n + l  

~, D~,-~-yzvQ,,Ox)--k(l  -4- IX)/~* + . . . .  ~ ( 1  --  Ix2) (17) 
n ~ l  

r--~cQ p - ~ )  

It hence ,  follows d i rec t ly  that  D n = 0 for  n ~ 1, and D1 = --1, s ince  QI(g) = - ( 1 - p 2 ) / 2 .  T h e r e f o r e ,  the 
f i r s t  app rox ima t ion  for  the i n t e r i o r  domain  is 

$o = '/4 ( 2r~ - -  3r -4- ~/r)  ( t  - -  Ix2) _ k (t  -4- Ix) (18) 

3 (19) D~2~o = ~ -  (1 --  ~ )  

AS in [6], i t  is  a s imple  supe rpos i t i on  o f  the rad ia l  ve loc i ty  field, when there  is only blowing,  on the 
Stokes d i s t r ibu t ion  without  blowing.  

352 



For all the subsequent approximations, the boundary conditions in both domains are 

Ot~n ~ i O~Fn l Oxi"n Dt~vt2" n 
o~ - 0 ,  =0 ,  p~ o~ =0 ,  P oo - 0 '  - - 7 - = 0  (20) 

and the c o n s t r u c t i o n  of the a p p r o x i m a t i o n s  is  made  as  fo l l ows .  

The e x p a n s i o n  of  (4) in the  s m a l l  p a r a m e t e r  R for  the s e c o n d  m e m b e r  of  the e x p a n s i o n  t ak ing  a c c o u n t  
of  the f o r m  of ~I' 0 y i e l d s  an  equa t ion  a n a l o g o u s  to the known O s e e n  equa t ion  

~ (1 O D o2"ax'l O D ~ Uc'a 
__ ~ ) ~  + t~ ~ = D2~rl (21) 

I ts  s o l u t i o n  fo r  Dp2~i s a t i s f y i n g  the b o u n d a r y  cond i t i ons  (20) has  b e e n  p r e s e n t e d  in  [10] and can  be  
r e p r e s e n t e d  a s  

c~ 

Do'W1 = e-p(1-~)]2 ~ Bn s~__ ~ (n + s)! (22) 
~ = ~  = s,. (n - s)! p~ Q~'  (~) 

As i s  s e e n  f r o m  (13), the h i g h e r  m e m b e r s  of the s o l u t i o n  (22) shou ld  be  m a t c h e d  a s  p 4 0  with the e x -  
p r e s s i o n  fo r  Dr2r a s  r ~oo  by  m e a n s  of  the cond i t i on  (9) 

co 

3B 2 n~__ 1 2n~ ~.2 Q~(~)= F~(R)R B~ p--g-4TQ,~([, ) (23) 

This  r e l a t i o n s h i p  i s  s a t i s f i e d  i f  B I = --Y2,  Bn = 0 fo r  n ~ 1 and Ft(R) = R. T h e r e f o r e  

3 DJ~F1 = - y  I + - ~  (24) 

The general solution of this equation, which satisfies the boundary conditions at infinity for the second 
approximation, is 

D 
3 (1 + ~) e-p(1-~)/2 (25) �9 ~ = Coo(i +~)  + Y, -~ -  Q~ (~) + ~  

n~0  P 

I t  i s  s e e n  f r o m  the m a t c h i n g  cond i t ion  tha t  a l l  the m e m b e r s  of the S tokes  e x p a n s i o n  for  r ~ r162 shou ld  
e n t e r  in to  the O s e e n  e x p a n s i o n  fo r  p ~ 0  and  c o n v e r s e l y .  Hence ,  the h i g h e r  m e m b e r s  of (25) shou ld  be 
m a t c h e d  fo r  p ~ 0  with  the s e c o n d  m e m b e r  in the e x p r e s s i o n  fo r  r s i n c e  the f i r s t  m e m b e r  has  a l r e a d y  
b e e n  m a t c h e d :  

,~ 3 (l + ~) - -  --4- P (1 - -  W ~) + (26) 3 ~ ( 1 - - ~ 2 ) +  = ~ -  Co9(l + ~ ) + D  o ( t + ~ ) +  ~ Q ~ ( ~ ) + - ~  4 R "'" ' ' '  
r~oo P~O n~L O 

C o m p a r i s o n  of the  t e r m s  shows  tha t  

C O 0, D 0-= --a/2, ,D~  = 0 for n : # 0  

T h e r e f o r e ,  the e x p r e s s i o n  fo r  the s e c o n d  m e m b e r  of the C s e e n  e x p a n s i o n  i s  

~F I = - -  3t 2 (t + t~) [1 - -  e-p(1-~)12] (27) 

As can  be s e e n  f r o m  the c o n s t r u c t i o n ,  the in f luence  of b lowing  upon the s o l u t i o n  in  the O s e e n  d o m a i n  
u n d e r  the  c o n s t r a i n t s  made  k < 1 i s  only  p e r c e p t i b l e  in the t h i r d  m e m b e r  of  the e x p a n s i o n .  

The s e c o n d  m e m b e r  of the i n t e r i o r  e x p a n s i o n  i s  c o n s t r u c t e d  a n a l o g o u s l y .  Unde r  the a s s u m p t i o n  tha t  
f~(R) = R, and  a f t e r  s u b s t i t u t i n g  the e x p r e s s i o n  fo r  $0 in  (1), the equa t ion  fo r  ~b~ a c q u i r e s  the fo l lowing  f o r m :  

9 2r - -  3 + Q~ (~) + - 7 -  Q~ ([~) = D~a*~ (28) 2r ~ 
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and  i t s  s o l u t i o n  fo r  2 . Dr~ 1 i s  

9k 9 t ) 3 n 
2r a" Q2 (P~) + -7 -  + B~ r€ Qn (ix) (29) 

By m e a n s  of the cond i t ion  (9) fo r  r ~ ~ ,  th is  s o l u t i o n  is  m a t c h e d  to the e x p r e s s i o n  fo r  D ~ t  fo r  p ~ 0 
and  i t  i s  h e r e  t aken  into a c c o u n t  tha t  the  h i g h e s t  m e m b e r  in the l a t t e r  has  a l r e a d y  b e e n  m a t c h e d  

p -- + Q, (t ~) + AoQo (~) + ~, " - 7 -  Q. (1~) H- ~_j B.  ~ Q. (ix) = T ix + " "  (t - -  ix2) T 

r~cc p--~O 

(30) 

This  is  s a t i s f i e d  i f  A 0 = 0 and B n = 0, i . e . ,  

9k 3 ( 9 
D ~ r  = - ~  0~ (ix) - -  T i ar 

i ) An 
2r a" O,(ix)-~" E - ~ - - Q n  (ix) (31) 

The s o l u t i o n  of  th i s  equa t ion  c a n  be r e p r e s e n t e d  a s  

+) s s ] ~ l  : - -  - ~  Oi (ix) -4- 2 r  ~ - -  3 r  - -  Q2 (~) - -  An �9 2 (2n-- i) r ~-2 Qn (i x) -4- + Dnr n+i Q~ (ix) (32) 

o r  a f t e r  s a t i s f y i n g  the b o u n d a r y  cond i t i ons  on the s u r f a c e  fo r  r 

co 

~.  [ 2n - -  t _1_ rn+i 2n + i ] D~Q. (ix) + 
*l  = ,~=l[ 2 - ~ - -  --  2rn_-----. ~ 

+ + 3r (33) 

The m a t c h i n g  now is  a c c o r d i n g  to cond i t ion  (8) wi th  the e x p r e s s i o n  for  ,1,1, f r o m  which  the m e m b e r s  
m a t c h e d  e a r l i e r  have  b e e n  e l i m i n a t e d  

D,,P n+i 3 3 2 +p2Q~(ix) + . .  
~ '  ~ Q= (~) ~- T P~Q2 (ix) -4- . . .  = - 7 "  p Ol (~) -~ (34) 

Condi t ion  (34) is  s a t i s f i e d  i f  DI = - ~ ,  D n = 0 fo r  n ~ 1. The a s s u m p t i o n  tha t  f l ( R )  = R i s  v e r i f i e d  
s i m u l t a n e o u s l y .  

We f ina l ly  have  

( 3 i ' .  
$~ = - r2 - T r + ~ - )  Q~ (N + 

t + rt--~-,)Q~.(ix ) 9 k ( r - - 2 + + ) Q i ( i x )  

= - -  r ~ Q1 (~t) - - E  l - T -~ 4r z 2r 3 Qs (~) 

(35) 

(36) 

As shou ld  have  b e e n  e x p e c t e d ,  the f i r s t  two m e m b e r s  in  (35) a r e  ana logous  to those  ob ta ined  in  [10], 
and  the l a s t  m e m b e r  t a k e s  a ccoun t  of i n t e r a c t i o n  b e t w e e n  the b lowing  and the f r ee  s t r e a m .  

If the v e l o c i t y  p r o f i l e s  a r e  d e t e r m i n e d  by  m e a n s  of  the two m e m b e r s  found fo r  the e x p a n s i o n s  (5) and 
(2), then ,  an e x p r e s s i o n  fo r  the p r e s s u r e  d i s t r i b u t i o n  P can  be found by  us ing  the N a v i e r - S t o k e s  equa t ion  
fo r  the r - th  c o m p o n e n t  o f  the m o m e n t u m .  

In the O s e e n  d o m a i n  (p = Rr) th is  d i s t r i b u t i o n  which  s a t i s f i e s  the cond i t ion  

P p ~  = P o  / PoU~o 2 

a t  in f in i ty  wi l l  be 

Po 3 R (37) 
P* _ - -  cos 0 poU~ z 2 p~ 
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w h e r e  P0 i s  the d e n s i t y  of the m e d i u m ,  an d  i t s  m a t c h e d  p r e s s u r e  d i s t r i b u t i o n  in  the  i n t e r i o r  d o m a i n  i s  

p ,  ~ P0 3cos0 9 cos0 k~ 
9oU-------- T - - .  2 R r  ~ t6r 2 2r 4 ~- 

25 9 t k c o s O +  -4- 
-~- - -  ~ -~- 4r a 2r 5 ~ 8r 3 t6r 4 

( 9 7 3 t )s inZ0 
-~- - -  ~ -~- "t6ra 16r 4 32r 6 

s!~-) cos 2 0 § 
(38) 

F r o m  (38) the  p r e s s u r e  o n  the  s p h e r e  s u r f a c e  e q u a l s  

P r = l  ----- Po 3 cos 0 9 cos 0 cos ~ 0 i t  sin s 0 k 2 3k cos 0 
PoUo~ 2 2R t6 -~ 2 32 2 '-~ 16 (39) 

2 2 The  c o e f f i c i e n t  of a e r o d y n a m i c  d r a g  of the s p h e r e  i n  the  c u s t o m a r y  r e p r e s e n t a t i o n  C f  = F/p0U ~ (F 
i s  the d r ag )  c o r r e s p o n d i n g  to the  p r e s s u r e  p r o f i l e s  (39) a n d  the  t a n g e n t i a l  s t r e s s e s  on  the  s u r f a c e  d e t e r -  

m i n e d  f r o m  the  e x p a n s i o n  (2) i s  

24 (1 ~- -~6 R* 7k _ , \  C ~ = ~  - - ~ H  ) ,  R * = 2 R  (40) 

The  f i r s t  two m e m b e r s  a r e  the  k n o w n  S tokes  e x p r e s s i o n  w i th  the O s e e n  c o r r e c t i o n ,  and  the l a s t  m e m -  
b e r  c h a r a c t e r i z e s  the  i n f l u e n c e  of  the  b l o w i n g  and  shows  tha t  th i s  i n f l u e n c e  g r o w s  t o w a r d s  a d i m i n u t i o n  in  
s p h e r e  d r a g  a s  the  R e y n o l d s  n u m b e r  i n c r e a s e s .  
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